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A series of laboratory experiments is presented investigating regular and chaotic
baroclinic waves in a high-Prandtl number fluid contained in a rotating vessel and
subjected to a horizontal temperature gradient. The study focuses on nonlinear as-
pects of mixed-mode states at moderate values of the forcing parameters within the
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regular wave regime. Frequency entrainment and phase locking of resonant triads and
sidebands were found to be widespread. Cases were analysed in phase space recon-
structions through a singular value decomposition of multi-variate time series. Four
forms of mixed-mode states were found, each in well-defined regions of parameter
space: (1) a nonlinear interference vacillation associated with strong phase locking
through higher harmonics; (2) a modulated amplitude vacillation showing strong
phase coherence in triads involving the long wave; (3) an intermittent bursting of
secondary modes; (4) an attractor switching flow, where the dominant wave number
switched at irregular intervals between two possible wave numbers.

Many of the mixed-mode states are suggested to arise from homoclinic bifurcations,
whereas no secondary Hopf bifurcations were found. One of the postulated homoclinic
bifurcations was consistent with a bifurcation through intermittency. The bifurcation
sequences, however, were strongly affected by phase locking between different wave
number components and frequency locking between drift and modulation frequen-
cies. When all free frequencies were locked, the flow reduced to a limit cycle which
subsequently became unstable through an incomplete period-doubling cascade. The
only observed case of torus-doubling was also associated with strong phase locking.

Most of the observed regimes were consistent with low-dimensional dynamics in-
volving a limited number of domain-filling modes, which can be represented in phase
space reconstructions and characterized by invariants such as attractor dimensions
and the Lyapunov exponents. Some flows associated with a weak structural vac-
illation, however, were not consistent with low-dimensional dynamics. It appeared
rather that they were the result of spatially localized instabilities consistent with
high-dimensional dynamics, which can be parametrized as stochastic dynamics.

1. Introduction

In the mid-latitude atmosphere baroclinic waves are among the most energetic large-
scale phenomena contributing to the poleward transport of heat and momentum,
and it is widely accepted that fully developed nonlinear baroclinic waves have a
significant effect on the atmospheric circulation and its predictability. These wave-like
perturbations of the westerly winds in the middle latitudes grow from an instability
of the rapidly rotating atmosphere subjected to a horizontal temperature gradient
caused by the differential solar heating.

One system to study baroclinic waves in laboratory experiments is the thermally
driven rotating annulus (Hide & Mason 1975). In this system an upright cylindrical
fluid annulus is differentially heated in the horizontal and rotated about its vertical
axis of symmetry (see figure 1). With the imposed temperature difference and the
rotation rate of the apparatus a stability parameter Θ and the Taylor number T , the
two principal non-dimensional parameters, can be defined. The stability parameter,
sometimes referred to as a Burger number or thermal Rossby number and related to
the rotational Froude number, is defined by

Θ ≡ gα∆Td
Ω2(b− a)2 , (1.1)

where g is the acceleration due to gravity, α the volume expansion coefficient, ∆T
the imposed horizontal temperature difference, Ω the rotation rate, d the depth, and
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Figure 1. Schematic diagram and cross-section of the rotating annulus.

a and b the inner and outer radius of the annulus as shown in figure 1b. The Taylor
number is usually defined by

T ≡ 4Ω2(b− a)5

ν2d
, (1.2)

where ν is the kinematic viscosity.
The resulting flows show a wide variety of distinct regimes depending upon the

experimental parameters. Besides steady axisymmetric flows on one side and spatially
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irregular, aperiodic flows, the so-called ‘geostrophic turbulence’, on the other, the
regimes at intermediate parameter values include flows of spatially regular waves
drifting through the annulus which can be steady, quasi-periodic, or aperiodic in time.
The main variants of time-dependent regular waves are usually classified as amplitude
vacillation (AV) and structural or shape vacillation (SV) (Hide & Mason 1975; Pfeffer
et al. 1980). AV is characterized by the periodic growth and decay of the wave
amplitude with little change in wave shape, resulting in an oscillatory heat transport
across the annulus, while in SV it is the wave shape rather than the total amplitude
which changes, resulting in only weakly varying heat transport across the annulus.
Experiments with the rotating annulus have so far concentrated on phenomena with
timescales from O(10) rotation periods—a few minutes—which is a typical timescale
of the vacillations, to O(100) rotation periods, the range of typical drift periods. More
recently, however, oscillations on significantly longer timescales have been found.
Read et al. (1992) (in the following referred to as RBJS) observed a chaotic mixed-
wave state, a modulated amplitude vacillation (MAV) with a modulation timescale
of up to 1000 rotation periods, well within the regular wave regime, though precise
parametric boundaries and bifurcation sequences were not determined.

The work presented in this paper was motivated by the observations by RBJS of
this chaotic, low-frequency MAV regime, which they suggested arose from nonlinear
wave interactions apparent in the phase coherence of the dominant wave mode and
its sidebands. As well as this MAV, a number of novel types of very-low frequency
oscillations and mixed-mode states were found at parameter values close to the MAV
regime. The experiment and the methods to analyse the data are presented in §2,
with emphasis on the method to evaluate the strength of the phase locking. The
presentation of the results is divided into the description of the general results in §3
and the results from specific subregimes in §4–7. In §8 possible explanations for the
occurrence of mixed-mode states and the low-frequency variability will be discussed,
and the main points are summarized in §9.

2. Experimental apparatus and procedures

(a ) Apparatus
Experiments were performed using a conventional rotating annulus, which was—

apart from the experimental control and instrumentation—identical to the apparatus
used by Hignett et al. (1985) and RBJS. A schematic drawing and a cross-section
of the annulus are shown in figure 1. The vertical side walls consisted of two coaxial
brass cylinders with boundaries at radii a = 25 mm and b = 80 mm which were
kept at different, constant temperatures, while the horizontal lid and base were ther-
mally insulating. The fluid depth was d = 140 mm. The annulus was mounted on
a turntable such that its vertical axis of symmetry coincided with the axis of rota-
tion. To investigate low-frequency behaviour the experimental conditions needed to
be maintained constant for a long time (a single experiment lasted typically 24 h).
This was achieved by a computerized experimental control system; the accuracy of
the turntable rotation was better than 1 part in 105 over timescales of a few min-
utes, without any detectable variation over timescales longer than 1 h, and the wall
temperatures could be maintained to within ±0.01 K. The system also offered fully
automated parameter control with smoothly varying experimental parameters. With
this technique it was possible to cover a range of parameters T and Θ while keep-
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ing interruptions to the equilibrated flow to a minimum. The working fluid used
was the same water/glycerol solution as RBJS, with ca. 17% by volume of glycerol
and a Prandtl number of Pr = 26.7 at 20 ◦C. The temperatures of the fluid inte-
rior and the side walls were measured using copper-constantan thermocouples with
a sensitivity of 40 µV K−1. Two configurations of thermocouple arrangements were
used, a single thermocouple ring and a double ring. In the single ring, 32 thermo-
couples were equally spaced in azimuth at mid-height (z = 70 mm) and mid-radius
(y = (r − a)/(b− a) = 1/2). With this configuration, which was also used by RBJS,
the azimuthal wave number spectrum could be obtained by Fast Fourier Trans-
form techniques. In the second configuration, 64 thermocouples were arranged in
two concentric thermocouple rings of 32 thermocouples each, again equally spaced
in azimuth. Both rings were at mid-height, one at y = 1/4 and the other at y = 3/4.
With these two rings some information on the radial structure could be obtained
besides the azimuthal wave number spectrum. The experiment’s dimensions, fluid
properties, and sensors are listed in table 1.

(b ) Experimental procedure
Following RBJS, the range of parameters investigated was restricted to a range of

8×105 < T < 2×107 and 0.05 < Θ < 1.1. Due to the timescales involved, each of the
experiments for one pair of T and Θ lasted for 20 h, or typically ca. 20000τ0 where τ0
is the rotation period of the annulus. During these 20 h either all thermocouples were
scanned at 12 s intervals or, to achieve a better temporal resolution, only a subset
of the thermocouples was used; typically 16 thermocouples at 3s intervals. After the
20 h measuring period the Taylor number T was gradually increased by about 5%
over a period of 2 h, while Θ was kept constant. Following the change of parameters
the flow was allowed to settle down for another 2 h before the next 20 hour-long
measuring period began. Each set of experiments performed in this way for a fixed
value of Θ contained 10 to 15 experiments covering a range of ∆T of 3× 106 to 107.
For some sets of experiments T was kept fixed while Θ was gradually increased in
the same manner as described above.

The same procedure was also applied for decreasing values of T or Θ , respectively.
This was done to detect possible hysteresis in flow transitions and multiple equilibria.

(c ) Data analysis
(i) Fourier analysis

For the analysis of the data two methods were used: spatial Fourier transform
and multi-channel singular systems analysis (M-SSA). With fast Fourier transform
techniques applied to each thermocouple ring, the azimuthal temperature structure of
the flow field could be decomposed into the amplitude and phase of normal modes.
The amplitude information was used to classify the flow type. A clear distinction
between AV and SV was possible by comparing the amplitude of the dominant wave
mode of the outer ring with that of the inner ring. If there was no temporal phase
shift between the vacillation detected at the two rings then the gravest radial mode
(and/or higher odd modes) dominated the flow indicating AV, whereas a temporal
phase shift of approximately π indicated a dominating second radial mode (and/or
higher even modes), which is a characteristic of structural vacillation (cf. Pfeffer et
al. 1980).
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Table 1. (a) Annulus dimensions, (b) typical experimental conditions, (c) fluid properties at
20 ◦C, and (d) sensors

symbol value precision units

(a) Annulus dimensions

inner cylinder radius a 25.0 ±0.1 mm
outer cylinder radius b 80.0 ±0.1 mm
cavity depth d 140.0 ±0.2 mm
levelling on turntable ±10−4 rad
centring on turntable ±1.0 mm

(b) Typical experimental conditions

rotation rate Ω 1. . . 3 ±10−5 rad s−1

mean temperature 〈T 〉 20.00 ±0.02 ◦C
temperature difference ∆T 3. . . 20 ±0.02 K

(c) Glycerol/water with volume ratio ≈ 17%

density ρ 1098 ±1 kg m−3

kinematic viscosity ν 3.2× 10−6 m2 s−1

thermal conductivity κ 1.2× 10−7 m2 s−1

Prandtl number Pr ≡ ν/κ 26.7
volume expansion α 4.0× 10−4 K−1

(d) Sensors

thermocouple ring T 18. . . 23 ±0.01 ◦C
wall temperatures T 10. . . 30 ±0.01 ◦C
rotation rate Ω 1. . . 2.5 ±3× 10−6 rad s−1

(ii) Phase locking
Spatial phase relationships of the wave modes with respect to each other are a

clear sign of nonlinear wave interactions, the simplest of which is the three-wave
resonance (cf. Craik 1985). As Bretherton (1964) and Plumb (1977) showed, three
wave modes constitute a resonantly interacting wave triad if the sum or difference
of their wave vectors, ki, is zero, and if the angular frequencies of the wave drift, ωi,
add up to a frequency much smaller than the average drift, 〈ω〉:

km ± km′ ± km′′ = 0 (2.1)

and

ωm − ωm′ − ωm′′ � 〈ω〉. (2.2)
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The drift frequencies of finite-amplitude waves depended, among other factors, on
the wave amplitude, and thus time-dependent flows may intermittently satisfy the
resonance condition (2.2). Integrating (2.2) over time yields

ϕm−m′−m′′ ≡ φm − φm′ − φm′′ ≈ const. (2.3)

Measuring the degree to which ϕm−m′−m′′ clusters around a constant value shows
the importance of the particular wave triad with waves km, km′ , and km′′ . A ‘locking
density’, ρm−m′−m′′ , may be defined over the data set, which gives information about
the time-averaged phase locking: strong phase coherence would result in a strong
peak at the preferred value of ϕ, while no phase coupling would give a flat density
function over its entire range 0 . . . 2π. In Appendix A a derivation of ρm−m′−m′′ is
given, together with a description of how to evaluate the locking density.

A higher-order interaction is the sideband interaction (Plumb 1977), first discussed
in the breakdown of surface waves by Benjamin & Feir (1967), in which case the
dominant mode, m, and its sidebands m± δ travel at the same phase speed. In the
annulus with a discrete azimuthal wave spectrum the sidebands of mode m are m±1,
and the resonance condition for this wave interaction mechanism is

2ωm − ωm−1 − ωm+1 � 〈ω〉. (2.4)

It follows that this equation, integrated over time, leads to

Φm = 2φm − φm−1 − φm+1, (2.5)

where Φm is approximately constant. As in the triad phase locking a sideband locking
probability density, ρm, can be defined as a measure of the time-averaged strength
of the wave coupling by this mechanism with equation (A 4), but using Φm instead
of ϕm−m′−m′′ .

(iii) Phase space reconstruction
In order to get information on the flow as a finite-dimensional dynamical system,

phase portraits were reconstructed using the temperature measurements from a sub-
set of the entire thermocouple ring arrangement. The reconstructions employed a
form of singular systems analysis (SSA), or singular value decomposition (SVD), in
the form developed by Broomhead & King (1986) and implemented for multivariate
(M-SSA) data by Read (1993). Apart from the representation of the flow in phase
portraits, Poincaré sections and return maps, invariants of the flow were calculated
from the M-SSA phase space reconstruction, namely the attractor dimension after
Grassberger & Procaccia (1983) and the largest Lyapunov exponent after Wolf et al.
(1985).

3. Results

(a ) The regime diagram
The experiments presented in this study were performed over the range in T and

Θ of 6 × 105 6 T 6 2 × 107 and 0.05 6 Θ 6 1.1, which generally resulted in
spatially regular waves with relatively low azimuthal wave numbers. All observed
flows were dominated by waves with wave numbers m 6 4. Figure 2 shows a regime
diagram of the parameter space investigated. The classification of the flow types was
made on the basis of a spatial Fourier transform of the temperature records from
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Figure 2. Regime diagram, showing all regimes observed over the range in T and Θ investigated.
The dashed lines indicate hysteresis. Where more than one flow type was found, all types are
listed separated by commas. Since the onset of vacillation is difficult to determine, only an
approximate indication is given by the dotted lines. The abbreviations are listed in table 2.

the thermocouple rings, which resulted in time series of the amplitudes and phases
of zonal wave modes. The different flows were achieved by changing the parameters
smoothly and slowly across the parameter space as described in §2 b. The first part
of this section will present the general structure of the regime diagram as well as
some features common to several different flow types. It was found that the phase
velocities of the dominant wave mode generally followed a well defined functional
dependence on the control parameters, T and Θ , but that they were independent of
wave number, as discussed further in §3 b. This section of general results is followed
by a discussion of specific subregimes in §§ 4–7.

The general features of the regime diagram in figure 2 are not only in good quanti-
tative agreement with the study by RBJS, who used a fluid with an identical Prandtl
number (Pr ≈ 26), but are also in qualitative agreement with annulus experiments
which used fluids with lower Prandtl numbers (James et al. 1981). The flow types in
the regime diagram, which are introduced in the following paragraphs, are summa-
rized in table 2. Experiments, which will be referred to in the following sections by
their labels (a) to (m), are listed in table 3.

The simplest flow, denoted symmetric in the regime diagram, is a steady purely
zonal flow with a vertical shear. The shear flow is in thermal wind balance with the
imposed temperature gradient. In the upper symmetric regime, for large values of
Θ , the stratification suppresses instability. In the lower symmetric regime, at small
T and small Θ , diffusive effects stabilize the zonal flow. The transitions from these
two regimes to baroclinic waves form the characteristic anvil shape in the regime
diagram, which has been extensively studied (Hide & Mason 1975).

The wave regimes are denoted by their dominant wave number, together with ab-
breviations indicating their temporal behaviour. In flows which are characterized by
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Table 2. Summary of the flow types shown in the regime diagram

term description

symmetric purely zonal flow with vertical shear
D dispersive weak waves with irregularly fluctuating wave amplitudes
2 steady m = 2 wave

2SV structural vacillation of m = 2
3 steady m = 3 wave

2+3IV dispersive steady waves m = 2 and m = 3
3AV amplitude vacillation of m = 3

3MAV modulated amplitude vacillation of m = 3
3MAV-r 3MAV with reversed phase drift

3/2I 3MAV with intermittent bursts of m = 2
2-3A 3MAV alternating with 2SV
3SV structural vacillation of m = 3

4MAV modulated amplitude vacillation of m = 4

more than one wave mode, the two most energetic wave numbers are used to label
the regime. A simple number, e.g. 3, denotes a steady wave pattern with the cor-
responding zonal wave number, m = 3, which drifted with a well defined frequency
along the annular channel, while its shape and amplitude remained relatively con-
stant over time. Phase space reconstructions from temperature time series measured
at fixed locations in the fluid gave limit cycles in this regime. One tends to observe
lower wave numbers towards higher Θ or higher T , although the existence of mul-
tiple equilibria is widespread and is a well known phenomenon in this system (Hide
& Mason 1975), in the sense that more than one wave number or flow type can be
observed under identical parameter conditions. In figure 2 this is shown by listing
the observed flow types separated by commas, as in ‘3,4MAV’, for example. Apart
from the choice of the parameters, the observed flow depends largely on the initial
conditions and the way the point in parameter space was approached.

Towards the boundary of the region of parameter space where a particular mode
dominates the flow, the temporal and spatial structure of the flow generally became
more complex. The simpler time dependent flow regimes observed are amplitude vac-
illation (AV) and structural vacillation (SV). For AV the amplitude of the wave varies
periodically while the shape of the wave pattern remains constant. The strength of
the vacillation is characterized by a vacillation index, IV, as introduced by RBJS,
and is defined over one vacillation cycle as

IV =
Amax −Amin

Amax +Amin
. (3.1)

In an AV flow, IV is a constant, but it varies over time if the vacillation itself is mod-
ulated. Amplitude vacillation of a zonal mode is found for values of Θ higher than
those for the steady regime of the same mode. The transition from steady waves to
AV is often a gradual one, and the distinction between them is somewhat arbitrary.
A convention used by Hignett (1985) and RBJS chooses a critical vacillation index
of IV = 0.05, below which the flow is said to be essentially steady. Large-amplitude
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Table 3. Experimental parameters and main frequencies of the experiments described in detail
in the text

(The labels are used in the text to refer to these experiments. T , Θ , Gr are the Taylor number,
the thermal Rossby number, and the Grashof number respectively. fd and fv are the drift and
vacillation frequency of the dominant wave mode. fm,i,a in quasi-periodic flow is the frequency
and in aperiodic flows the timescale of either the modulation, the bursting, or the wave number
switching.)

label regime T Θ Gr ωd ωv ωm,i,a

[×106] [×106] [×10−3 Hz]

(a) 2+3IV 4.31 1.09 4.69 1.444 13.29 8.809 ωd = ωd2, ωm = ωd3

(b) 2+3IV 3.85 1.09 4.21 1.282 12.76 8.301 ωd = ωd2, ωm = ωd3

(c) 2SV 4.54 0.637 2.89 0.895 11.0 —

(d) 3MAV 6.09 0.370 2.25 1.22 5.66 0.977
(e) 3MAV 2.47 0.455 1.12 0.712 3.60 0.075
(f) 3MAV 6.09 0.394 2.40 1.404 5.60 1.404
(g) 3MAV-r 2.74 0.667 1.83 0.326 5.11 0.326
(h) 3MAV-r 2.83 0.645 1.83 0.321 5.25 0.321 before locking

0.329 5.25 0.329 after locking

(i) 3/2I 3.64 0.540 1.97 0.488 6.12 0.426
(j) 3/2I 4.10 0.608 2.49 1.65 6.57 1.65 ωi

0.08 ωm

(k) 2-3A 3.64 0.590 2.15 0.529 6.00 0.111 ωd2, ωv3, ωa

(l) 3AV 3.64 0.527 1.92 — 6.41 — stationary wave
(m) 3AV 3.85 0.526 2.03 — 6.47 ωv/2 stationary wave

structural vacillation, on the other hand, occurs towards the geostrophic turbulence
regime, i.e. at lower values of Θ and higher values of T than the respective steady
wave. While the total wave amplitude, and with it the radial heat transport, re-
main fairly constant, the shape of the wave varies approximately periodically. Phase
portraits of AV flows show quasi-periodic tori, but SV flow, of which a number of
varieties have been observed, is generally less regular than AV, and phase portraits
are not consistent with a simple torus. A weak structural vacillation, however, is ob-
served for most of the ‘steady’ wave regime. This weak structural vacillation, which
is identified with the ‘wavering’ of the ‘jet’ stream described by Hide (1953), is the
subject of discussion of §5.

The superposition of two steady waves with different zonal wave numbers and dif-
ferent phase speeds will result in a quasi-periodic oscillation of the flow field, termed
an interference vacillation (IV). While interference vacillation has been previously
observed in an annulus with a free surface (Pfeffer & Fowlis 1968), the present ob-
servation of the interference of two zonal modes, m = 2 and m = 3, is the first docu-
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mented occurrence of interference vacillation in the thermal annulus with a rigid lid.
The drift frequencies ωd2 and ωd3 were always found to be incommensurate, resulting
in flow on a torus. The IV regime will be discussed in §4.

In this study three main types of more complex flows were observed, one of which
was a modulated amplitude vacillation (MAV), which involved zonal modes other
than the dominant and its harmonics. The 3MAV was first investigated by RBJS
and formed the motivation for this investigation. Two other complex flow types,
which have not been reported before, consisted of (a) an intermittent distortion of
the flow field by the growth of an m = 2 component at the expense of the basic
3MAV (3/2I), and (b) a flow type in which the flow alternated between two zonal
wave modes, m = 2 and m = 3 (2-3A). These multi-mode states are the main focus
of this paper and will be discussed in detail in §6.

The flow denoted ‘D’ in figure 2, close to the lower axisymmetric regime, did
not equilibrate to a pure regular wave state, but was characterized by irregular
fluctuations of the first four azimuthal wave modes. These modes had amplitudes of
about 2–3% of ∆T , compared to 5–8% for regular waves. Since the modes drifted
independently through the annular channel without any apparent phase-locking, the
regime is referred to as the dispersive regime (D). In more specific cases, subregimes
of the dispersive regime are designated Di with i denoting the zonal wave number
which was on average the strongest. While the transition from the dispersive regime
to the m = 3 regular waves was an abrupt one, at higher Θ the mode m = 2 gradually
became more and more prominent, until the flow was either a marginally vacillating
m = 2 or the interference vacillation 2+3IV. The drift frequency of wave 2 varied
smoothly from the D2 to the IV regime. Phase space reconstructions of D could not
reveal any underlying structure in the irregular wave behaviour.

(b ) Pattern drift velocities
It was noted that the drift velocity of the wave pattern showed some coherent

behaviour independent of the dominant wave number; a trait which was observed
by Hide (1958) in an annulus with a free surface. In figure 3 the drift speed of the
dominant Fourier mode divided by the wave number is plotted for all experiments
performed for this study. From the 2+3IV regime, both ωd2/2 and ωd3/3 are plotted.
The majority of the points lie on a fairly well defined curve, denoted (A), with an
appropriate functional form of

ωd/m ∝ Gr1.25±0.5, (3.2)

wherem is the zonal wave number of the dominant mode andGr the Grashof number,
defined by

Gr = T Θ = 4gα∆T L3/ν2. (3.3)
This not only confirms Hignett’s (1985) observation that the phase speed was con-
tinuous across a wave number transition, but it also extends this relation to flows
far from a wave number transition.

Apart from the cases following the ‘regular’ behaviour, there are two more distinct
clusters, one at high phase speeds (B), and the other (C) branching off from the
regular behaviour to very slow phase speeds. The branch C of rapidly decreasing
ωd (with increasing Gr) was formed by the 3MAV-r flows and those 2-3A flows
which were close to the 3MAV-r regime. While the waves in all other experiments
drifted with a positive (superrotating) phase velocity, these waves actually moved in
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Figure 3. Phase speed of the dominant wave number vs Gr (see text and equation (3.3). The
solid line (A) has a slope of 1.25, the broken line (B) has a slope of 0.75. The different symbols
correspond to the following regimes: ◦ 3 and 3MAV, � 3MAV-r, ♦ 3/2I, + 2-3A (ωd2), × 2-3A
(ωd3), ? 2SV, 4 4MAV, • D and 2+3IV.

a retrograde sense around the annular channel. The drift period seemed to diverge
towards the transition from the 3MAV-r to the 2SV flow with a longest observed drift
period of τd ≈ 7000 s. The change in the phase speed seemed to follow a functional
dependence on the distance from a critical value of T as

ωd ∝ −µ0.65±0.05, (3.4)

where µ ≡ Tc − T with Tc = (3.6 ± 0.1) × 106. The given standard deviation in
the exponent is obtained as a formal error from the regression analysis, but does
not include any effect of the uncertainty in the value of Tc. With this uncertainty
included, the uncertainty in the exponent is estimated at around ±0.2. Since this
phenomenon was only observed for a very small range of Θ , this regression could not
capture any possible dependence on Θ or combinations of T and Θ .

The experiments which cluster around branch B at fairly high values of ωd, were
found either to be long-lived transients or the m = 3 mode in the 2+3IV regime.
When the apparatus was spun up from rest, initial transients would normally decay
after O(10 min). After this the flow could settle either into equilibrated flow with
ωd on branch A, or into a metastable transient AV with a very high phase speed.
The range of drift frequencies observed for the transient AV was between 10−3 and
10−2 Hz, generally a factor ca. 5 faster than for the finally equilibrated flow. Occa-
sionally the drift frequency was observed to be identical to the vacillation frequency.
These transients had a variable life time, but they could persist for up to 30 h before
undergoing the final transition to waves with drift frequencies on the main branch A.
The transition from the fast transient AV to the equilibrated flow took O(10 min),
and, compared to the transient, the time averaged spatial wave spectrum showed
increased intensity in the sidebands after the transition.
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4. Interference vacillation

The flow designated as interference vacillation (2+3IV) can be described as the
superposition of two waves. While this coexistence of two zonal modes has been ob-
served in annulus experiments with a free surface by Pfeffer & Fowlis (1968) and
Kaiser (1970), no occurrence of interference vacillation has been previously reported
in an annulus with a rigid lid. In our case, waves m = 2 and m = 3 travelled with dif-
ferent phase velocities through the annulus, while vacillating weakly and apparently
irregularly with a rather high frequency of O(0.04 Hz). The pattern drift frequency
ratio observed in our experiments ranged from ωd3/ωd2 = 5.56 to 8.16 without any
indication of frequency locking between the two drift frequencies. Of the two modes
the mode m = 2 followed the scaling of equation (3.2) with ωd2 = O(10−3 Hz), but
m = 3, which would normally be expected to have a drift frequency around 3/2ωd2,
travelled at a much higher frequency of ωd3 = O(7 × 10−3 Hz) corresponding to
branch B in figure 3. Despite the vacillation—at first sight a third frequency—the
phase portrait was for most of the IV regime a clean T 2-torus, indicating that the
vacillation was linked to the two drift frequencies. Towards lower Θ , a somewhat
slower vacillation became apparent in conjunction with the break-up of the T 2-torus
to a more complex and irregular ‘fuzzy’ torus.

Theoretical studies of two-layer models (Hart 1981; Pedlosky 1981) have shown
that no mixed wave states would be stable on an f -plane. Including the β-effect intro-
duces dispersion into the system, and the bifurcation analysis by Moroz & Holmes
(1984) of a weakly nonlinear two-layer model produced stable mixed-wave states,
but only for adjacent wave numbers above m = 4. For the other wave numbers,
the mixed-wave states were found to be unstable, showing a hysteretic wave number
transition instead. Mansbridge (1984), also using a two-layer model, studied the ef-
fect of varying β on wave number transitions and found that adjacent wave numbers
could coexist above a critical value for β/r, where r =

√
νf/U =

√
E/Ro is the

Ekman-dissipation parameter generally used in two-layer models. The critical value
for β/r varied from 102 for m = 1 and 2, with a minimum of 43 for m = 5 and 6,
rising back to (β/r)crit = 63 for m = 9 and 10.

The apparatus of the present study had flat end walls, and thus the flow was to first
order on an f -plane. Hide & Mason (1978) argued, however, that in this apparatus the
basic axisymmetric flow has a non-zero radial potential vorticity gradient due to the
vertical variation of the horizontal flow. From numerical simulations of axisymmetric
flow they calculated a potential vorticity gradient comparable to U/L2. Using this
for β∗, with U = 10−2m s−1 and the other quantities from table 1, we obtain β/r =
β∗LD/

√
2νf = 0.7, well below the critical values found by Mansbridge (1984).

In a linear superposition of two steady modes the zonal flow component would
be steady as well. Ohlsen & Hart (1989a), however, observed a form of nonlinear
interference vacillation of the zonal modes m1 = 1 and m2 = 2 in a mechanically
forced two-layer system which resulted in an oscillation of the zonal flow component
at a frequency ω0 = 2ω1−ω2. They argued in another paper (Ohlsen & Hart 1989b)
that a zonal flow component with the frequency ω = |m1ω2 −m2ω1| could be forced
through a chain of triad and self interactions. This interaction scenario, applied to
our case of m1 = 2 and m = 3, is shown in figure 4a. The chain would comprise the
triad (2|3|1) transferring energy into m = 1 with ω1 = ωd3 − ωd2. Mode m = 1 then
could force its harmonic through self interaction, 1 → 2, with ω2 = 2ωd3 − 2ωd2.
The resulting m = 2 would finally interact with the original m = 2 to give a zonal
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Figure 4. Wave interaction mechanisms for nonlinear interference vacillation, (a) following
Ohlsen & Hart (1989b), and (b) the mechanism observed in these experiments.

flow correction with ω = |3ωd2− 2ωd3|. In Ohlsen & Hart’s experiments, however, in
which modes m = 1 and 2 were dominant, the interactions are somewhat degenerate
because one of the dominant modes is also the harmonic of the other, and the other
is the long wave itself.

Analysis of the vacillation frequency in our quasi-periodic IV regime showed indeed
that ωv = 2ωd3− 3ωd2. It was observed, however, that the modes m = 4, 5, 6 showed
much stronger peaks in their power spectra than the long wave. Also, triads involving
the modes m > 2 showed stronger phase locking than triads including the long wave,
m = 1, as measured by the maximum value and half-width of the triad locking
probability density function defined in equation (A 4). As shown in figure 5 the long
wave triad (3|2|1) has a rather low and broad maximum of ρ3−2−1 = 0.4 at ϕ = π,
whereas the harmonic triad has a well defined peak of ρ6−4−2 = 0.9 at ϕ = π/2.

With modes m = 2 and m = 3 it is also possible to produce a zonal flow oscillation
with the observed frequency by harmonic and self interactions only, because m = 6 is
a harmonic of both dominant modes, as shown in figure 4b. Thus m = 2 would force
m = 6 with ω = 3ωd2, and m = 3 would force it with ω = 2ωd3. This interaction
scenario is possible for all pairs of adjacent zonal wave numbers {m,m + 1} since
the mode m′ = m× (m+ 1) is forced by m with frequency (m+ 1)ωm and by mode
m+ 1 with frequency mωm+1 resulting in a zonal flow correction with the frequency
|(m+ 1)ωm −mωm+1|.

Towards lower Θ , where the torus was unstable, no similar relationship between
the wave drifts and the vacillation could be detected, and also the phase locking
was different from the quasi-periodic IV. While most triads were largely unaffected,
the preferred phase relation of the harmonic triad changed from ϕ6−4−2 = π/2 to
5π/4. Close to the transition to the D2 regime the quasi-periodic IV underwent a
torus-doubling bifurcation as illustrated by the return maps in figure 6. The simple
torus (case (a)) in figure 6a has doubled in the transition to case (b), shown in figure
6b, with the 8-shaped first return map which becomes a circle in the second return
map. It appears that the transition to the irregular D2 is possibly through only
one torus-doubling bifurcation followed by another torus instability. The nonlinear
interactions in the harmonic triad seem to be an essential feature in stabilizing the
nonlinear interference vacillation.
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(a)

(b)

Figure 5. IV regime, case (a): triad locking probability density function for the triads (a)
(3|2|1), and (b) (6|4|2).

5. Weak structural vacillation (2SV)

At values of T and Θ greater than those for the m = 3 flows, a weak structural
vacillation of an m = 2 flow was observed (see regime diagram in figure 2). The
occurrence of vacillation at this range of parameters was initially surprising, since
RBJS had reported a marginally steady wave in this region of parameter space only
showing the barely perceptible wavering of the jet stream of steady wave patterns
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Figure 6. IV regime: return map of Poincaré sections at vector 1 = 0; (a) for case (a) in the
centre of the regime, and (b) for case (b) close to the transition to the D2 regime.

(Hide 1953). It is, however, unlikely that a steady and a vacillating flow of the same
wave number could co-exist.

The weak vacillation seemed to be related neither to the observed amplitude vac-
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illation nor to the structural vacillation reported by RBJS; the vacillation frequency
was not similar to the vacillation frequency of the AV flows, and the phase space re-
construction was entirely different from the phase portraits obtained for SV by RBJS.
It is more likely that the actual regimes of RBJS and the present study are identical,
and that the apparent discrepancy is an artefact of the thermocouple arrangements.

A possible explanation may be found by comparing two cases from our experi-
ments at similar parameter values, one of which used the double thermocouple ring
measuring at y = (r − a)/(b − a) of 1/4 and 3/4 respectively, while the other em-
ployed the single thermocouple ring with the thermocouple junctions at y = 1/2
as used by RBJS. The experiment measuring at mid-radius gave as the vacillation
index (cf. equation (3.1)) IV = 0.04 and would be classified as a steady wave 2,
following Hignett (1985). Measuring at y = 1/4, however, resulted in IV = 0.13, and
at y = 3/4 even IV = 0.31. Furthermore, comparing the wave amplitude at the inner
thermocouple ring with that at the outer ring revealed that their vacillations were
in antiphase: an amplitude maximum at the outer ring coincided with a minimum
at the inner ring. This suggests that the wave can be kinematically described by the
superposition of a steady gravest radial wave mode (m = 2, n = 1) and a small am-
plitude oscillation of the second radial mode (m = 2, n = 2). This description of SV
is consistent with observations by Pfeffer et al. (1980), who used a three-dimensional
array of 2016 thermistors in a free-surface annulus. Weng et al. (1986) found a quasi-
periodic structural vacillation in a numerical model of a continuously stratified fluid,
which contained two different radial modes of the same zonal wave number. Their
structural vacillation was characterized by an almost steady first radial mode, su-
perimposed on which was an oscillatory second radial mode. Consistent with our
observations, the mean amplitude and strength of the vacillation of the second ra-
dial mode was considerably weaker than the amplitude of the steady gravest radial
mode. As in our observations, their vacillation frequency was also higher than a typ-
ical AV vacillation frequency. The second radial mode has a node near the channel
centre, and thus is not easily detected by probes at mid-radius. The time series in
figure 7a, which shows the vacillating amplitudes of the azimuthal wave at the inner
and outer thermocouple ring, respectively illustrates the phase shift between the two
vacillations.

The power spectrum of the temperature time series has distinct peaks at the
drift and vacillation frequencies (labelled ωd and ωv in figure 7b with ωd = 9 ×
10−4 Hz and ωv = 1.1 × 10−2 Hz), together with higher harmonics, and their sum
and difference components. This suggests well defined dynamics governing both the
large-amplitude drifting wave and the relatively weak vacillation, and one would
expect flow on a torus. The phase portrait, however, only reveals a thickened limit
cycle (figure 8a);† the Poincaré section, too, could not reveal any further structure.
Instead of observing a—possibly noisy—toroidal surface, the trajectory appears to
cover the entire interior of the torus (figure 8b). The large scale structure of the
drifting wave pattern is very well represented by a limit cycle but the vacillation with
a distinct frequency of ωv ≈ 10−2 Hz in the power spectrum could not be captured
by a low-dimensional phase space reconstruction. Consequently the Grassberger–
Procaccia algorithm (Grassberger & Procaccia 1983), failed to give consistent scaling.

† To enhance the clarity of three-dimensional phase portraits, the trajectory is broadened into a ribbon,
where the orientation of the ribbon is determined by the curvature of the trajectory, as described by
Darbyshire & Price (1990).
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Figure 7. 2SV regime: (a) superposition of time series of wave amplitudes of modes m = 2 from
two experiments: the dash-dotted line is from case (c) at y = 1/4, the dotted line from case (c)
at y = 3/4, and the solid line is from an experiment measuring at y = 1/2. (b) Power spectrum
of the thermocouple temperature at y = 1/4 from case (c).

The correlation integral, given in figure 8c, shows two distinct regions, a small scaling
region at large phase space radii with a small correlation dimension of around dc =
1.3, corresponding to the limit cycle structure of the steady first radial mode, and
a region where the correlation integral falls off rapidly, possibly converging to an
attractor dimension of dc ≈ 4.5. The total heat flux in figure 8d only shows a high
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slope with dc ≈ 5.8. This behaviour has also been reported by Guckenheimer &
Buzyna (1983) for temperature measurements of the fluid interior in a thermally
driven rotating annulus. While for amplitude vacillation they found clear scaling
regions with slopes around dc ≈ 3, their analysis of structural vacillation showed two
scaling regions. For larger values of the phase space radius the correlation integral
had a slope of dc = 1.6, which as the radius was decreased gave way to a slope
around dc ≈ 7. Similarly, RBJS observed for 3SV that the dimension estimates for
time series of the fluid temperature and the total heat flux were not consistent with
each other.

The existence of a distinct frequency of the apparently irregular vacillation sug-
gests a secondary dynamic instability of the flow, which RBJS suggested is manifest
as spatially localized transients and thus cannot be described by global dynamics rep-
resented in phase space reconstructions. As mentioned above, the high-dimensional
nature of the observed SV is consistent with SV flows observed in other investigations,
but structural vacillations of baroclinic waves are much more diverse than amplitude
vacillations. Tamaki & Ukaji (1993), for instance, observed a quasi-periodic—and
thus low-dimensional—form of structural vacillation in a thermally driven rotating
annulus with a free surface, which was also found in numerical integrations (Ukaji
& Tamaki 1990). In contrast to the SV observed in this study, the time series of the
amplitude of the dominant zonal wave mode at an inner and an outer location was
mainly in phase, with the wave amplitude at mid-radius vacillating out of phase with
these.

6. Flows dominated by m = 3

At very low values of Θ , Θ . 0.1, depending on the initial conditions, the flow
either equilibrated to a steady m = 3 or to a complex m = 4 MAV state. Over most of
them = 3 region, however, the amplitude of them = 3 Fourier component varied over
time, either in the form of a periodic oscillation (AV) or a more complex modulated
oscillation, such as the MAV. The only highly regular quasi-periodic AV observed was
the small 3AV regime observed at large values of Θ (> 1.0); all apparent 3AV flows
observed at smaller values of Θ were interspersed among multi-mode 3MAV flows,
and they were found to be frequency-locked states (see below, §6 b). The amplitude
of the vacillation, as measured by the vacillation index IV (equation (3.1)), increased
with Θ throughout the main m = 3 region from IV ≈ 0.05 around Θ = 0.1 to
IV = 0.85 for the 3MAV-r flow at Θ = 0.8. The isolated 3AV region at even larger
values of Θ , however, had a smaller value for IV of ca. 0.75. The gradual increase of
IV with Θ was also observed by Fowlis & Pfeffer (1969) in a larger annulus (with
a free-surface), and by Hignett (1985) in an annulus identical to the present but
with a fluid of smaller Prandtl number Pr ≈ 13. Studies of the effect of Pr on the
vacillation by Jonas (1981) and Pfeffer et al. (1980) noted that at higher Prandtl
numbers, vacillating waves became more widespread at the expense of the steady
wave regime. The increased stability of steady waves in fluids with lower viscosities
shows that the equilibration of the baroclinic flow to steady wave patterns is not
merely a product of viscous effects, but must be explained by nonlinear feedback
mechanisms. Hignett (1985) reported observing extended regions of steady waves
in a fluid with Pr = 13, though these were classified with a thermocouple ring at
y = 1/2 and thus might be either steady waves or a weak structural vacillation.
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Figure 8. 2SV regime, case (c): (a) phase portrait, (b) Poincaré section at vector 1 = 0.

Using an identical apparatus, and a higher −Pr fluid, RBJS and the present study
found only flows which marginally satisfied the criterion for steady flow (cf. equation
(3.1)) with IV ≈ 0.05. These almost steady wave flows, found at Θ 6 0.1, still showed
distinct peaks at the vacillation frequency in the power spectrum of the temperature
data.
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(c)

(d)

Figure 8. Cont. Correlation integral for reconstructed phase portrait: (c) thermocouple ring
data, (d) heat flux.

The vacillation frequency, ωv3, seemed largely independent of Θ throughout the
time-dependent m = 3 flow regimes, but increased with T (see figure 9a):

ωv3 ∝ T 0.6±0.1. (6.1)

The data were obtained from all AV, MAV and 3/2I flows of this study. The scaling
of the vacillation frequency is in very good agreement with the findings by RBJS
who observed a scaling of ωv3 ∝ T 0.62. The present experiments resulted in scaling
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Figure 9. 3MAV regime: (a) scaling of the vacillation frequency of the m = 3 wave mode with
T . Curve (A) has a slope of 0.5, and curve (B) a slope of 0.7. (b) Time series of wave amplitudes
of azimuthal wave modes m = 3 (solid line) and m = 2 (dashed line) from case (d).

exponents ranging from 0.4 to 0.7, where some sets of experiments showed scaling
very close to ωv ∝ √T (in this case the vacillation frequency would be a linear
function of the background rotation). The vacillation frequency in the 3MAV-r flow
might also be consistent with the scaling in equation (6.1) with ωv3 ∝ T 0.67, but
it might on the other hand be determined by the specific scaling of the drift and
modulation frequencies of this regime with ωd,m ∝ −(Tc−T )0.65 (cf. equation (3.4)).
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If both frequencies showed the same scaling exponent of 0.65, say, then their ratio
would scale as ωd,m/ωv ∝ −(Tc/T − 1)0.65.

(a ) Modulated amplitude vacillation
The strength of the vacillation was frequently observed to be weakly modulated

on timescales of the order of the drift period or longer, where the modulation of the
m = 3 mode was usually linked to a modulation of the weaker zonal modes. This
modulated amplitude vacillation regime was studied in detail by RBJS. In this regard
our experiments were a continuation of their study, addressing the role of nonlinear
interactions, especially resonant triad interactions and frequency locking. The 3/2I
flow which, strictly speaking, is a form of MAV, and which gradually evolves from
the simple 3MAV upon change of parameters, is discussed separately below. Apart
from this, two types of modulated amplitude vacillation were observed in this study,
denoted respectively as 3MAV and 3MAV-r.

A fairly typical example of a 3MAV flow (case d) is given in figure 9b, which shows
a time series of the wave amplitudes of m = 3 and m = 2 from the spatial Fourier
analysis of the temperature data. The vacillation of the amplitude of wave 3 with
a period of ca. 177 s ≈ 62τ0 can be seen, where τ0 is the rotation period of the
apparatus, superimposed on which is a modulation of the amplitude on a timescale
of ca. 1000 s ≈ 355τ0. Decreases in the intensity of the amplitude vacillation of m = 3
are associated with increased activity in wave 2. The wave 3 pattern drifts along the
annular channel with a period of ca. 820 s ≈ 287τ0 without any indication of locking
between these three frequencies.

The regime denoted 3MAV-r showed a much stronger vacillation index and a
rather unusual wave propagation. Unlike all other flows observed, the dominant mode
drifted slowly through the channel in a retrograde direction, opposite to the back-
ground rotation. While the vacillation frequency was consistent with the other 3MAV
and 3AV flows, the drift frequency seemed to tend to zero close to the transition to
the 2SV regime, following the scaling given in equation (3.4) (branch C in figure 3).

(b ) Frequency entrainment
Due to the common occurrence of frequency locking of ωm to ωd, no clear re-

lation between the experimental parameters and the modulation frequency could
be detected. The lowest frequencies, however, were observed for small values of the
Grashof number (case e with ωm = 7.5 × 10−5 Hz at Gr = 1.12 × 106). This obser-
vation is consistent with the experiments by RBJS, though the extent of the MAV
regime in the present study was larger than reported by RBJS, extending to smaller
values of both T and Θ . An exception to the rule of ωm increasing with Gr was the
observed modulation of the 3MAV-r flow, in which ωm was always found to be equal
to ωd, and therefore decreasing with increasing T .

Locking of the vacillation frequency to any of the other frequencies was much less
common. Entrainment of ωv by ωd, but not by ωm or vice versa, was never observed,
but a few isolated cases were observed in which all three frequencies were locked
or almost locked. In those cases the generic three-frequency flow collapsed onto a
periodic limit cycle. Ratios observed in the 3MAV regime included ωv/ωd,m = 5 and
3, and occasionally the flow was a pure 3AV which could be interpreted as locking
of ωm to ωm = ωv. In one case (f) the locking was incomplete, or intermittent, in
that for a while the frequencies were in a ratio of ωv/ωd = 4 followed by a rapid
phase shift before the frequencies again took this integer ratio. Furthermore, the
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Figure 10. 3MAV regime, case (f): (a) phase portrait, and (b) Poincaré section at vector 1 = 0
of fully frequency locked flow.

incompletely locked oscillation was period-doubled, but instead of a period-doubled
limit-cycle the trajectory was stretched into a period-doubled ‘ribbon’. This is shown
in the phase portrait and the Poincaré section in figure 10.

An example of the very long timescale sometimes associated with the onset of
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frequency entrainment by the vacillation was found in the 3MAV-r regime. While
for all observed flows in this regime the modulation frequency was locked to the
wave drift with ωm = ωd, the vacillation frequency was generally incommensurate
to the drift frequency, ranging from ωv = 6.3ωd to 41.7ωd over the investigated
3MAV-r regime. This was reflected in the toroidal structure of the attractor in phase
space reconstructions. In one experiment (case h), however, it was observed that
the modulation suddenly became more pronounced after ca. 4000τ0. Phase space
reconstructions, carried out separately over the two halves of the time series, offered
an explanation for this change: while before the transition the trajectory filled the
surface of a torus, the orbit after the transition clustered around a limit cycle with
a frequency ratio of ωv = 16ωd (see figure 11). At the transition the drift frequency
changed from ωd = 3.21× 10−4 Hz to 3.29× 10−4 Hz—a change of 2.6%—while the
vacillation frequency remained unchanged.

In the 4MAV regime the coupling of the vacillation frequency to the other two
frequencies, ωd and ωm, appeared to be much stronger than in the 3MAV regime. Not
only was the modulation frequency always found to be equal to the drift frequency,
but also the drift frequency was always found to take an integer ratio of either
ωv/ωd,m = 4 or occasionally ωv/ωd,m = 3.

(c ) Mode interaction
Hide et al. (1977) and RBJS reported a strong phase coherence of the domi-

nant mode with its sidebands, as measured by the sideband phase locking function
Φm = 2φm−φm−1−φm+1 defined in equation (2.5). Hide et al. (1977) suggested the
significance of a sideband instability akin to the Benjamin–Feir instability (Benjamin
& Feir 1967), in which the dominant mode transfers energy to its sidebands with a
long-wave modulation of the flow. In the case of the annulus with its discrete wave
spectrum, the long-wave is the zonal mode m = 1. This mechanism, shown schemat-
ically in figure 12a, was supported by a theoretical study of small-amplitude Rossby
waves in a channel (Plumb 1977), which showed that such a wave may be unstable
to sideband interactions. A wave with the total horizontal wave number (m,n) and
wave vector k = (k, l) (k = 2πm/α and l = πn with α the channel aspect ratio)
is unstable to weak sideband interactions if k/l < 0.681, and unstable to stronger
triad interactions otherwise. If the results from small-amplitude Rossby waves in a
straight infinite channel carry over to the large-amplitude waves in the annulus, then
with (m,n) = (3, 1) and α ≈ 6 the condition would not be satisfied with k/l ≈ 1.
Taking into account the side wall boundary layers and the curvature of the chan-
nel, the effective aspect ratio will be larger than 6. With an effective aspect ratio of
α = 9 the criterion would be met with k/l = 0.67. Thus the observed wave satisfied
conditions close to where the theoretically preferred mechanism changes from the
sideband interaction to triad interactions.

A different mechanism to explain the sideband phase locking, shown in figure
12b, was proposed by James et al. (1981) based on observations from numerical
simulations of a steady wave. They found that the primary energy source for the
sidebands was the first harmonic of the dominant mode, forming a triad (2m|m −
1|m+ 1). Both mechanisms would result in sideband phase locking with a minimum
net forcing of the sidebands at Φm = π. To distinguish these two mechanisms it is
suggested here to analyse the phase coherence of wave triads with the triad locking
probability density function as defined in equation (A 4). The long-wave mechanism
can be regarded as the coupling of two almost resonant triads (m|m − 1|1) and
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Figure 11. 3MAV-r regime, case (h): Poincaré sections at vector 1 = 0 from phase space
reconstruction, (a) first half, (b) second half of experiment.

(m|m+1|1), while the harmonic mechanism relies on the triad (2m|m−1|m+1). In the
present case of a dominant zonal mode m = 3, analysing the phase coherence of the
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Figure 12. Wave interaction mechanisms for the sideband coupling, (a) via the long wave, and
(b) via the harmonic mode.

triads (3|2|1), (4|3|1), and (6|4|2) will give indications about the relative importance
of the respective mechanisms.

Investigating the phase coherence of the steady wave m = 3 with other zonal
modes confirmed the findings by James et al. (1981). Even though the amplitude of
the sidebands was typically less than 10% of the dominant mode, a strong sideband
phase locking with Φ3 ≈ 3π/4 was observed. The triad locking probability density
function showed that the sideband coupling was consistently associated with triad
phase locking of the harmonic triad with ϕ6−4−2 ≈ 3π/2. Together with the observed
phase coupling of the first harmonic to the dominant wave number through self-
interaction with ϕ6−3−3 ≈ 3π/4, one obtains Φ3 = ϕ6−4−2 − ϕ6−3−3 ≈ 3π/4.

The most effective phase coupling in the 3AV and 3MAV flows was generally
achieved by the lower sideband/long-wave triad, (3|2|1), while the upper sideband/
long-wave triad, (4|3|1), and the harmonic triad, (6|4|2) typically showed much less
pronounced phase locking. This would suggest that in these vacillating flows the
harmonic triad proposed by James et al. (1981) is less important than the long
wave. Possibly the single triad (3|2|1) or the sideband instability suggested by Hide
et al. (1977) is a significant nonlinear wave interaction in the observed amplitude
vacillation.

A reversed scenario, however, is suggested for the isolated 3AV regime for very
large Θ , above the IV regime. Only the harmonic triad revealed any noticeable triad
phase locking, supporting—as for steady waves—the interaction mechanism after
James et al. (1981). The long wave triads, otherwise preferred by vacillating waves,
showed no evidence for coherent wave coupling.

Since the resonance condition for wave triads, equation (2.2), depends on the
amplitude of the interacting modes, it can be expected that the strength of phase
coupling varies over time in time-dependent flows. RBJS noted the necessity for an
amplitude threshold to observe significant phase locking. They attributed this to the
fact that noise made the reliable determination of wave phases impossible for small
amplitudes. In the present study the effective noise threshold was about 0.01 K,
below which no meaningful phase could be computed. Above this noise threshold,
however, the phase locking functions showed phase coherence only over part of a
vacillation cycle. Usually the phase locking was strongest when the secondary modes
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were relatively strong. Using a higher, dynamical, threshold for the evaluation of
the phase locking density showed much increased phase coherence. The value of
the dynamical threshold depended on the wave number of each component and the
particular flow examined, but was almost always well above the noise level with
values of the minimum locking amplitude up to Aci ≈ 0.2 K for the secondary modes
with wave number i, compared to a total amplitude range of 0.03 < Ai < 0.4 K in
the particular example in figure 9b. The dominant mode, m = 3, was always above
any threshold for moderately vacillating flows. Only in the 3MAV-r regime did the
amplitude of m = 3 drop below its dynamic threshold of Ac3 ≈ 0.3 K for parts of the
vacillation cycle.

Occasionally the dynamical threshold for locking in the strongest triad was of the
order of, or less than, the noise level. One of such cases was the ultra-low frequency
modulation in case (e), which altogether showed much stronger phase coupling com-
pared to the other more typical 3MAV flows; all triads showed strong phase coher-
ence, and the lower sideband-long wave triad was phase-locked for the entire dynamic
range of the modes m = 1, 2, and 3 above the noise level. In the 3MAV-r regime,
some flows were observed where the triad (3|2|1) would be active for all amplitude
ranges of the waves, though the value of ϕ3−2−1 would change with the amplitude
of m = 3. In this case the locking density would peak at values from ϕ3−2−1 ≈ 3π/8
to ϕ3−2−1 ≈ 5π/8 during phases of a strong mode 3, but when m = 3 was weak it
would peak at ϕ3−2−1 ≈ π.

When frequency locking was observed between the wave drift of the dominant
mode and its vacillation in any of the 3AV and 3MAV regimes, enhanced phase
locking between sidebands and other waves was observed, especially for the harmonic
triad. The value of Φ3 and ϕ6−4−2, however, varied for different amplitude ranges.
For strong sidebands Φ3 ≈ 7π/4 and ϕ6−4−2 ≈ π, but with weak sidebands, the
phase relation changed to Φ3 ≈ 3π/4 and ϕ6−4−2 ≈ 7π/4.

(d ) Intermittent bursting
Upon increasing Θ (or T ) from the 3MAV regime, the modulation of wave 3 be-

came more pronounced and less regular, and the weaker modes became stronger. In
particular mode m = 2 showed intermittent large-amplitude bursts, which coincided
with the collapse of the vacillation of m = 3, followed by an approximately expo-
nential recovery of the vacillation. This behaviour, and the bursting of m = 2, can
be seen in the time series of the amplitude of modes m = 2 and 3 in this regime in
figure 13a (case i).

As one moves further into the region of parameter space labelled 3/2I in the regime
diagram in figure 2, these bursts become more frequent and stronger. The average
frequency of the bursts, ωi, was observed to be—like ωd—primarily a function of the
Grashof number. The best regression was obtained for a power law increase of ωi
with Gr above a critical value Grc (see figure 13b), of the form

ωi ∝ γ0.7±0.1 (6.2)

with γ = Gr−Grc. On the basis of these data, the critical value Grc was bounded by
1.6× 106 6 Grc 6 1.7× 106. A value of Grc = 1.66× 106 was chosen for the scaling,
resulting in a correlation coefficient of 0.968, and a formal error for the exponent of
±0.04. Including the uncertainty in Grc results in the quoted uncertainty of ±0.1.

The phase locking appeared to divide the regime into two parts, the regular sub-
regime at smaller Θ and larger T , which had regular bursts at relatively high burst
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(a)

(b)

Figure 13. 3/2I regime, case (i): (a) time series of wave amplitudes of modes m = 3 (solid line)
and m = 2 (dashed line), (b) scaling of the burst frequency with Gr. The regression curve has
a slope of 0.71.

frequencies, and the more irregular 3/2I at larger Θ and smaller T . The regular sub-
regime showed essentially the same phase locking as the 3MAV flows with strongest
coupling in the lower sideband/long wave triad (3|2|1), but in the less regular 3/2I
both the sideband locking and the phase locking were much reduced.

Phase space reconstruction using multi-variate SSA reveals a trajectory with a
roughly toroidal structure (figure 14a) for the 3MAV regime. The ‘wall’ of the torus,
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(a)

(b)

Figure 14. 3MAV (case d) and 3/2I regimes (case i): phase portraits of (a) a 3MAV flow and
(b) a 3/2I flow.

however, is thicker than can be accounted for by experimental noise. Besides the
‘fuzzy’ torus, the return map of successive values of eigenvector 2, shown in figure
14c, has two clusters of points which indicate that the progression around the torus
is interrupted at certain phases of the pair of eigenvectors 1 and 2. The thickening
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Figure 14. Cont. (c) and (d) their respective return maps of Poincaré sections at vector 1 = 0.

of the torus wall becomes more pronounced as one moves into the 3/2I regime, both
in the phase portrait in figure 14b and in the return map of the Poincaré section
in figure 14d. An estimation of the Correlation dimension using the Grassberger–
Procaccia algorithm showed for all experiments in these two regimes a convergence
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(e)

(f)

Figure 14. Cont. (e) and (f) their respective correlation integrals.

of the correlation integral with increasing embedding dimension, but while the 3MAV
showed a large scaling region with dc ≈ 3 (figure 14e), the 3/2I regime showed a non-
integer slope between dc = 3.1 and dc = 3.5 (e.g. figure 14f). The largest Lyapunov
exponents were estimated following Wolf et al. (1985) and found to be significantly
positive for flows in the irregular 3/2I regime with λ1 = 6 . . . 8 × 10−4 bits s−1. The
MAV flows discussed above seemed to be quasi-periodic or only weakly chaotic, with
λ1 either within the error level or λ1 . 4× 10−4 bits s−1 respectively.

Frequency locking was very rare in the 3/2I regime. Only one instance (case j) of
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complete frequency locking was found in the present series of experiments. In this
case, ωi, ωd, and ωv, were locked in a ratio 1 : 1 : 4. In addition to peaks at ωd,i,
ωv, and their sums and differences, the power spectrum also showed a distinct peak
at ωi/2 indicating that the bursts were period-doubled. The difference in amplitude
between successive bursts, however, did not remain constant, but was modulated over
time. As can be seen in the time series of mode m = 2 in figure 15a, the difference
between successive bursts grows gradually over time until, suddenly, successive bursts
become equal, after which the difference starts to grow again. The phase portrait
and its Poincaré section (figures 15b, c) show a limit cycle which is stretched into a
flat ribbon. The second return map in figure 15d of the Poincaré section shows an
increasing branch which corresponds to the gradual growth of the subharmonic, and
a few points corresponding to the collapse of the subharmonic to equal bursts. The
increasing branch forms a quadratic channel with the diagonal which is characteristic
of intermittency type III (Bergé et al. 1984) but, since no more frequency-locked 3/2I
flows were observed, it was impossible to prove that this is indeed a case of type-III
intermittency.

(e ) Attractor switching
In a range of parameters intermediate between the 3/2I, the 3MAV-r and the

2SV regimes, a flow type was observed which was characterized by a change of the
dominant wave number at irregular intervals. This flow regime, in which the dominant
wave number switched back and forth between m = 2 and m = 3, is denoted here
as ‘m = 2 − 3 Alternating’ (2-3A) in the regime diagram in figure 2. The m = 2
part of the flow was always similar to the 2SV flow described above in §5, while the
m = 3 part was similar either to the 3/2I flow described in §6 d or, for large Θ , to
the 3MAV-r flow described in §6 a. The time series of wave amplitudes for m = 2
and m = 3 in figure 16a (case k) shows one switching event from m = 3 to m = 2,
and a change back to m = 3 ca. 1000τ0 later. The interval between two wave number
changes ranged from several minutes to about 10 h.

The typical time interval between wave number changes was longer at parameter
values closer to the adjacent flow regimes. The closer the parameters were to the
2SV regime, the more time the flow spent in the m = 2 state, and vice versa. This is
illustrated in figure 16b which shows the relative residence time in m = 3, T r3 , over
a range of Gr. T r3 is the fraction of the experiment during which the dominant wave
number was m = 3. Though the scatter on the graph in figure 16b is considerable,
using Gr, rather than any other function of T and Θ , nevertheless seemed to give
the best representation of the data.

While the transitions between the 2-3A and 3MAV-r regimes and between the
2-3A and the 2SV regimes were very abrupt, the transition between the 2-3A and
3/2I regimes was much less distinct, being associated with a gradual increase in the
amplitude of the m = 2 bursts as T or Θ increased, until occasionally m = 2 became
strong enough to dominate the flow for a significant time.

Phase space reconstructions of the 2-3A flow show two distinct and mutually
orthogonal oscillation patterns, associated with the m = 2 and the m = 3 flow types
respectively (see figure 17a). Using multi-channel phase space reconstruction the
eigenvectors not only show the principal oscillations of the flow but also the spatial
structure of these oscillations. Eigenvectors 1 and 2 (see figure 17c), for example,
have the spatio-temporal structure of a travelling wave m = 2, while eigenvectors 3
to 6 (e.g. figure 17d) have the structure of a travelling, vacillating m = 3 wave. The
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(a)

(b)

Figure 15. 3/2I regime, case (j): (a) time series of wave amplitude of mode m = 2, (b) phase
portrait.

trajectory can be seen in figure 17a to orbit for part of the flow in the space spanned
by eigenvectors 1 and 2 with only small amplitude in the other eigenvectors, and for
the other part in the space spanned mainly by eigenvectors 3 to 6, with very small
amplitude in eigenvectors 1 and 2. These two separate regions in phase space are
joined by very rapid transitions between them.

As an alternative way of visualizing the transition between the distinct wave states,
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Vector 3

Figure 15. Cont. (c) Poincaré section at vector 2 = 1.0, and (d) its second return map.

figure 17b shows a phase portrait in a space defined by the total amplitude of each spa-
tial pattern, for which pairs of eigenvectors represent components of a single complex
pair. Based on the correspondence of the nonlinear principal components to linear
Fourier waves, the sum of the squares of a pair of principal components corresponds
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(a)

(b)

Figure 16. 2-3A regime, case (k): (a) time series of wave amplitudes of modes m = 3 (solid line)
and m = 2 (broken line), and (b) relative m = 3 residence time, T r3 vs Gr. The regression line
has a slope of −1.29.

to the amplitude of each wave-like oscillation. The irregularly vacillating 2SV part of
the flow thus collapses onto the cluster on the top, and the stronger vacillation of the
3MAV part is represented by the noisy cycle on the bottom. This picture suggests
the existence of two separate states joined either by a heteroclinic cycle or by the
mutual erosion of their respective basins of attractions through an attractor-merging
bifurcation; two possible mechanisms which will be further discussed in §8 c.
Phil. Trans. R. Soc. Lond. A (1997)
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(a)

(b)

Figure 17. 2-3A regime, case (k): (a) phase portrait of thermocouple data, (b).

The Grassberger–Procaccia algorithm applied to the temperature data resulted
in several small scaling regions with scaling exponents of dc ≈ 2.3, 4.5, and 1.5,
as given in figure 17e. From well behaved low-dimensional dynamics one would ex-
pect the dimension of the heat flux attractor to be one less than the attractor from
temperature data if the phase of the wave were unimportant (the heat flux is an
azimuthally integrated quantity) or an identical attractor dimension, if the modu-
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(c)

(d)

Figure 17. Cont. (c) First and (d) fourth eigenvector of (a).

lation of the amplitudes were caused through phase locking. Although converging,
the correlation integral from the heat flux data in the 2-3A regime had only two
scaling regions, as shown in figure 17f ; one with a much higher scaling exponent of
dc ≈ 5.7 which is similar to the scaling of the correlation integral for the heat flux
in the 2SV regime (cf. figure 8d), and another scaling region at small phase space
radii with the same scaling as the thermocouple data of dc ≈ 1.5. This suggests
that, if any, only the smallest region shows any reliable dimension estimate, while
the others scaling regions are caused by the strong inhomogeneity of the attractor in
the phase space. The heat flux shows only one additional scaling region because the
two oscillations corresponding to the two different wave states are in the same plane
of the phase space, whereas the temperature data of the two states span orthogonal
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(e)

(f)

Figure 17. Cont. (e) Correlation integral for the thermocouple data, and (f) correlation
integral for the heat flux.

subspaces. If the dimension of dc ≈ 1.5 were true then this would imply that there
is sufficient coupling of the drifting waves to the convection chamber, such that in-
formation of the phase drift is transferred to the total heat flux. In the phases of
the Fourier components, however, no clear phase could be associated with the wave
number transitions, which indicates that the essentially stochastic fluctuations of the
2SV state (cf. §5) might play an important role in this flow regime.
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7. Stationary waves

An accidental occurrence of an air bubble in the convection chamber produced
a topographic perturbation which resulted in the freely drifting waves becoming
stationary in the reference frame of the apparatus. When the bubble was small no
change in the flow was detected, but above a critical size the waves stopped drifting
along the channel. Neither the dominant wave number nor the vacillation of its
amplitude were significantly affected by this perturbation. This forced removal of a
free frequency, however, altered the subsequent bifurcation sequence drastically. The
initial flow, case (l), was on a noisy limit cycle (figure 18a) which, under increasing T ,
bifurcated to a noisy period-doubled limit cycle in case (m) (figure 18b). The spread of
the trajectory in the plane of the limit cycle is much greater than any instrumental
noise and must arise from transient or spatially localized fluctuations. A period-4
cycle was also observed on further increase of T , but neither a period-8 flow nor any
other transitions were found in the range of parameters studied. Although there was
evidence for intermittency of type III in the 3/2I regime and for torus-doubling in
the 2+3IV regime, the stationary waves were the only flows which showed a clear
sequence of two period-doubling bifurcations. Similar to the 2SV flow (cf. §5), the
noisy limit cycle is reflected in only very small scaling regions of the correlation
integral, with dc ≈ 1.5 in the period-1 flow and dc ≈ 2.4 in the period-2 flow. The
rather large value in the period-2 flow suggests that the dimension calculations are
unreliable in these cases, especially since the Lyapunov exponents for both cases are
much smaller than their uncertainty.

8. Discussion

We have presented a series of experiments with the thermally driven rotating an-
nulus with a flat rigid upper lid and base. The experiments were primarily aimed
at exploring multi-mode flows in the regular wave regimes with moderate domi-
nant wave numbers. The previous study by RBJS had shown the existence of low-
dimensional chaos in the guise of a modulated amplitude vacillation with significant
power in the azimuthal side bands and consistent phase locking of these sidebands
to the dominant mode. The present study has essentially confirmed the findings of
RBJS, but has also revealed a range of new complex flow types close to wave number
transitions.

An overall feature of the waves was their dependence on three main interdependent
non-dimensional numbers, the Taylor number T , the stratification parameter Θ , and
the Grashof number Gr ≡ T Θ . While the relevance of T and Θ has long been
known, the observed functional dependence on Gr of some free frequencies has not
been reported previously. In particular the drift of the wave patterns through the
annular chamber appeared to be a function of Gr only. In addition, the bursting
frequency in the 3/2I regime also seemed to scale withGr. In agreement with previous
studies, the vacillation frequency in AV and MAV flows, but not in SV, was found
to scale with T . Many of the regime boundaries appeared to align approximately
with lines of either constant Θ or constant Gr. With the thermal wind relation, Θ is
a measure of the Rossby number, where the advection by the shear flow associated
with the temperature gradient is compared with the Coriolis term. The Grashof
number measures the buoyancy force with respect to viscous dissipation, the main
forces in free (buoyancy-driven) convection. If other forces are neglected, a small
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(b)

K

Figure 18. Stationary waves: phase portrait of (a) simply-periodic flow (case l), and (b)
period-doubled vacillation (case m).

temperature contrast, and hence a small Gr, would result in weak convection. The
heat transport by free convection in non-rotating fluids is primarily a function of Pr
and Gr (Condon & Odishaw 1958). In the case of rotating convection in the annulus,
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it seems that the strength of the thermal wind, measured by Θ , and the convection
due to the balance of buoyancy and viscous dissipation, measured by Gr, have a
strong influence on the dynamics. In contrast, the Ekman pumping, measured by T ,
which is related to the Ekman number (T ∼ E−2), appears to be less important in
determining the timescales in the flow, except for the amplitude vacillation frequency.

One of the new features which we have observed was the transition from the
lower symmetric regime at large Θ (i.e. close to the upper symmetric regime) to the
dispersive regime D. For smaller Θ the usual transition to steady waves was observed.
The flows in the D regime showed irregular fluctuations of the amplitudes of the first
four zonal modes drifting with relatively high phase speeds. A different regime of fast
travelling irregular waves, called weak waves, has been known to occur at large T
close to the transition from the upper symmetric regime to regular waves, above the
theoretical marginal stability curve. In a numerical and experimental study by Jonas
(1981) it was established that these waves lie beyond the classical Eady cut-off, and
would grow from an instability due to the vertical variation of the symmetric flow.
A stability analysis of a realistic flow profile near the D regime, taking into account
both stratification and dissipation, might also show an instability not represented
in the Eady model. For instance, effects from the side walls are usually ignored
in theoretical models of baroclinic instability, assuming free-slip boundaries, but a
recent stability analysis of a two-layer fluid by Mundt et al. (1995) included no-slip
conditions at the side-walls. They found that, for a substantial range of parameters,
a chaotic wave solution coexisted with the symmetric solution close to the linear
stability boundary of the symmetric regime.

The improved control over the experimental conditions for very long durations in
the present study has enabled us to investigate low-frequency mixed-wave states,
which were observed within what was previously identified as the regular wave
regime in regions between ranges of parameter space dominated by two different
zonal modes. These multi-mode states arise from nonlinear wave interactions (e.g.
3/2I and 2+3IV) or from the merging of coexisting attractors due to the multiplic-
ity of states in the baroclinic annulus. Our findings can be broadly classified into
four main aspects: (a) frequency entrainment, (b) wave interactions, (c) chaos versus
stochasticity and finally, arising from these, (d) multi-mode regimes with ultra-low
frequency variability. These aspects will be discussed separately below in §§ 8 a–d
respectively. The long duration of the experiments also revealed for the first time the
existence of long-lived metastable transients, which could persist for much longer
than typical experiments reported in the literature. In this light, some phenomena
reported from previous studies might have to be interpreted with the possibility that
they also were transients rather than the final equilibrated solution.

(a ) Frequency entrainment and stationary waves
Generic MAV flows are weakly aperiodic, three-frequency flows with frequency

components corresponding to the phase drift of the dominant wave pattern, the am-
plitude vacillation and a slow secondary modulation. By frequency locking, however,
the number of independent free frequencies may be reduced to two, or even just
one. Two types of frequency entrainment were observed, locking of ωm to ωd, and
complete locking of all three frequencies, ωm, ωd, and ωv. Previous studies have re-
ported ambivalent evidence for the absence of frequency locking, lending support to
the theoretical results of Rand (1982) from group-theoretical arguments which sug-
gested a complete decoupling of amplitude and phase for wave-like disturbances in
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axisymmetric containers. Already in 1969, Fowlis & Pfeffer (1969) observed a weak
modulation of the amplitude vacillation when they used thermocouple probes, and
they suggested that the modulation actually arose from interactions of the waves with
the probes, which implies that phase and amplitude are not decoupled. Furthermore,
Hide & Mason (1975) observed that in annulus flows with a free surface, where the
wave pattern drifts at a timescale similar to the vacillation period, most flows showed
locking of these two frequencies. Only in experiments with a rigid lid, in which the
drift is an order of magnitude slower than the vacillation, is this frequency locking
removed. In the present work both the occurrence of a modulation and the locking
of the modulation and drift frequencies (which were of the same order) were very
common, and it is suggested that small irregularities in the container and thermocou-
ple ring perturbed the nominally circular SO(2) symmetry of the annular container,
which are present in any physical system. It would furthermore be expected that the
coupling of the waves to the container would show resonances when the symmetry
group of the waves is a subgroup of the symmetry group of the container or vice
versa. Since the thermocouple ring had D32 symmetry one might expect strongest
coupling with flow whose symmetry formed a subgroup of D32, such as waves m = 2
or 4. The only modulated vacillation observed which satisfied this condition, was the
4MAV at very low Θ (Θ < 0.08), and indeed, in all cases of that regime all three
frequencies were observed to be locked to each other.

In general, however, nonlinear coupling of the vacillation and drift frequencies was
much weaker than the coupling between the wave phase and the modulation. This
is not surprising if the presence of probes enhances the occurrence of a modulation,
as Fowlis & Pfeffer (1969) suggested. In a few cases, the vacillation frequency was
also observed to assume an integer multiple of the drift frequency, and the flow
became a limit cycle. In the main 3MAV regime, periodic, fully frequency-locked
flows were interspersed among chaotic flows where at least the drift and primary
vacillation frequencies were incommensurate. We suggest that in these cases we have
observed parts of a ‘devil’s staircase’, which was incomplete primarily because the
mechanism of the coupling was very weak. We found evidence (case h) that the
timescale of the onset of locking was of the order of, or longer than, the duration of the
experiments. Also, locked and incommensurate states were sometimes found under
identical conditions. If the experiment were left long enough at fixed parameters for
locking to take place, together with minimum variations in Ω and ∆T to scan the
parameter space, it might be possible to observe finite regions of locking in the form of
Arnol’d tongues arranged in a devil’s staircase as part of a generic transition to chaos
involving frequency locking. Due to the timescales associated with the experiment,
however, it was not feasible to test these ideas rigorously in the laboratory. Low-order
numerical models, which in addition to the dynamics of baroclinic waves also include
a weak coupling of the fluid with the container, might help to elucidate the problem
of coupling caused by imperfections present in every practical system. An approach
which is suggested here for further laboratory studies, is to reduce the timescale of
drift-vacillation interactions by introducing controlled perturbations of the spatial
symmetry with, for instance, false bases with topographic features consistent with
specific symmetry groups (e.g. D4 or D3).

The resonance of the wave drift with the container is a possible reason, for ex-
ample, that Ohlsen & Hart (1989a, b) observed locking and period-doubling in their
experiments, yet found bifurcations through the quasi-periodic route in their numeri-
cal model. Their two-layer experiment had three probes aligned on one diameter, one
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on the rotation axis and two at opposite sides three quarters out from the axis. This
would cause a wave 2 perturbation, which could strongly interact with the m = 1
and m = 2 modes in their study.

In our cases of fully frequency-locked flow, which had essentially one free frequency
left, period-doubling bifurcations were observed in a number of regimes (3MAV, 3/2I,
stationary waves), whereas a doubled torus in two-frequency flow was very rare, being
observed only in the small IV regime.

(b ) Wave interactions
It was observed in almost all experiments that the phases of the dominant zonal

mode m and its sidebands m± 1 were locked, or at least partially locked, such that
the waves drifted with the same angular frequency rather than with the same phase
speed, as one would expect of decoupled waves. In our experiments, the time-averaged
strength of this locking was measured by the sideband locking probability density
function ρm. This, and the triad locking probability density function ρm−m′−m′′ , were
found to be useful new tools in the analysis of different proposed wave interaction
mechanisms.

Two distinct wave interaction scenarios have been proposed in the past for the
coupling of sidebands, one involving two almost resonant wave triads, the other
combining the self-interaction of the dominant wave and one wave triad. In the
present series of experiments, the results from the numerical simulations of a steady
wave by James et al. (1981) were confirmed in certain cases, in that for steady waves,
the harmonic triad (6|4|2) showed more persistent and pronounced phase locking
than either of the long wave triads, (3|2|1) and (3|4|1). For time-dependent modes,
however, the interaction scenario was more complex, partly due to the amplitude
dependence of the resonance condition, with the result that the coupling strength
varied constantly in the different triads. The flow could in this case show a complex
alternation of phase locking scenarios as the wave amplitudes of the modes progressed
through their vacillation cycles.

The region of time-dependent m = 3 waves appeared to be divided into two parts,
one at large Θ (Θ & 0.9) and one at smaller Θ (0.2 . Θ . 0.8), separated by a
tongue of D2 flow and the interference vacillation. At smaller Θ the long wave triads,
especially (3|2|1), showed the strongest coupling, but at large Θ the 2+3IV and 3AV
regimes showed strong phase coherence in the harmonic triad. The transition from
the IV regime to the D2 regime occurred through a torus-doubling and the subsequent
break-up of the T 2-torus of the IV flow. At this transition the phase locking changed
abruptly from ϕ6−4−2 ≈ π/2 to ϕ6−4−2 ≈ 5π/4, which suggests that the harmonic
triad is an essential feature in stabilizing the 2+3IV and 3AV regimes.

For the more irregular 3/2I sub-regime the phase coherence was generally very
weak, and it seemed that in this regime wave-wave interactions are less important
than wave-zonal flow interactions. These findings are supported in numerical simu-
lations using a two-level quasi-geostrophic model by Früh (1996).

Frequency entrainment of the drift frequency to an integer fraction of the vacil-
lation frequency also modified the mutual phase locking of the triad components.
In the one directly observed case of onset of frequency entrainment it was the drift
frequency rather than the vacillation frequency which became entrained, and such
a forced change of the drift frequency would be expected to affect significantly the
resonance conditions. The result of frequency entrainment was always a marked en-
hancement in the phase locking, especially of the harmonic triad.
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(c ) Chaos versus stochasticity

Previous studies by Guckenheimer & Buzyna (1983) and RBJS have shown, by cal-
culating attractor dimensions and Lyapunov exponents, that amplitude vacillations
and (in the case of RBJS) modulated amplitude vacillations follow low-dimensional
dynamics, where the AV flows are quasi-periodic and the MAV flows usually chaotic.
The low-dimensional character of these flows was subsequently confirmed when Smith
(1992) successfully constructed a nonlinear radial basis function predictive model of
one of the chaotic MAV flows observed by RBJS, assuming a finite embedding di-
mension. In the present study, not only the MAV but also the 3/2I regime, which
appeared to develop from the MAV flow, possibly through a homoclinic bifurca-
tion, were consistent with low-dimensional dynamics. Correlation integral calcula-
tions showed scaling with small non-integer values of dc = 3 to 3.5, together with
positive Lyapunov exponents for the aperiodic 3MAV and 3/2I flows.

RBJS have already shown, however, that structural vacillation flows behave quite
differently. Independent dimension estimates, which were calculated from temper-
ature and heat flow measurements, failed to give consistent answers. They argued
that the SV arose not from a global, domain-filling instability, as for the AV, but
from spatially localized instabilities. We have not only confirmed this result, but also
found weaker but significant structural vacillation at much higher values of Θ , where
RBJS, working with a different arrangement of thermocouple probes, had previously
classified the flow as steady. The fluctuations of the wave amplitude, at around only
10% of the mean amplitude, were strong enough to destroy the scaling region in di-
mension calculations. This was reflected in the phase portrait which showed a limit
cycle broadened by ‘dynamical noise’ which was much stronger than any measure-
ment noise. The dynamics seemed to be divided into domain-filling and deterministic
low-dimensional dynamics of the large scales on one hand, and fluctuations arising
probably from localized transient instabilities on the other. It has been suggested
that the observed oscillations are the manifestation of the wavering of the jet stream
(Hide 1958; see also Hide & Mason 1975), which is detectable in thermal measure-
ments but only barely perceptible in flow visualization data. While this is certainly
possible, the amplitude of the oscillations seems too large to remain imperceptible
in visual data. Also, steady waves were found for which the measured amplitude
fluctuations were small enough to give satisfactory dimension estimates consistent
with flow on a limit cycle. While the SV fluctuations destroy the scaling regions
for dimension calculations, they still seem fairly regular with distinct peaks in the
power spectrum, and the cause must be found in a dynamical instability rather than
in purely random noise. If the growing disturbances are localized, they cannot be
described by domain-filling ‘normal modes’ and therefore appear very high dimen-
sional, or random at a practical level. These instabilities might have an atmospheric
counterpart in the concept of ‘optimal modes’ (Farrell 1989), which are disturbances
evolving locally at super-exponential rates while changing their shape. To investigate
the precise structure of the SV flows one would need high-resolution spatial data,
either from a dense thermocouple array, which would presumably affect the flow
considerably, or from high-resolution flow visualization techniques.

The presence of high-dimensional transients may also have implications for the
attractor switching 2-3A regime. If the attractor switching events were not due to
stochastic perturbations, a heteroclinic cycle could be postulated. Though usually
structurally unstable, a heteroclinic cycle can be stabilized by symmetries in the sys-
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tem. Aubry et al. (1988), for instance, observed heteroclinic cycles in a turbulent wall
layer. The presence of apparently irregular vacillation with an amplitude of about
10% of the mean amplitude makes it unlikely that a heteroclinic cycle could exist.
Random perturbations, however, could cause transitions between disconnected stable
solutions, as previously found, for instance between a limit cycle and a fixed point
(e.g. Gaveau et al. 1992). A different possibility for attractor switching is a crisis,
where two basins of attraction collide, described as attractor merging by Grebogi et
al. (1987). The observations in the 3/2I regime would seem to support the mecha-
nism of a classic attractor-merging crisis with the attractor of the 3/2I expanding,
as shown by the increasingly stronger m = 2 bursts, until it hits its basin boundary
and merges with the existing 2SV flow. One might speculate that the presence of
the high-dimensional, essentially stochastic, fluctuations in the 2SV part of the 2-3A
flow might induce the crisis before the actual attractor merging. We suggest therefore
that the most likely scenario for the creation of the 2-3A regime seems analogous
to a noise-induced crisis, such as that described by Sommerer et al. (1991), where
stochastic perturbations would push the trajectory over the still existing, but only
weakly repelling, basin boundary. The experimental evidence, however, is not conclu-
sive for determining the exact mechanism, or even whether the apparently stochastic
nature of the SV is essential.

A further investigation using simple idealized models of baroclinic waves, such
as a low-order spectral model, might be able to investigate these hypotheses more
rigorously. A purely deterministic model without any random forcing might be able
to reproduce SV through the onset of vacillation of a second radial mode. Such a
model, if found to reproduce a bifurcation sequency from flow similar to the 3/2I flow
to an m = 2 structural vacillation via an intermediate regime of alternation between
the 3/2I and 2SV caused by an attractor-merging crisis. On the other hand, a model
without any higher radial modes cannot describe any structural vacillation. Such a
numerical model, however, may show attractor switching when random forcing is
added as a parametrization of the localized fluctuations in the m = 2 state. If an
alternation between an m = 3 and m = 2 state were found in such a model, it would
provide a possible mechanism for the 2-3A flow, either as a result of stochastically
excited transition between two metastable states, or as a noise-induced crisis.

(d ) Multi-mode regimes and ultra-low frequency variability
Ultra-low frequency variability in the atmosphere has been a focus of attention

for some time. The timescales of interest are several months for weather prediction
(Egger & Schilling 1983; James et al. 1994; Strong et al. 1995) and many years for
climate studies (Rind & Overpeck 1993; Birchfield & Ghil 1993; Ghil 1994). While
it is clear that some of the low-frequency motions in the atmosphere are driven by
variations in the boundary conditions, such as sea-surface temperature patterns or
solar radiation, there is also increasing evidence to suggest that internal dynamics
of the extratropical atmosphere, without any external low-frequency forcing, can
also generate variability on timescales much greater than the life cycles of individual
synoptic and planetary waves. Our experiments have shown that a baroclinically
unstable atmosphere may show variability on timescales from months to decades,
which arises purely from the internal dynamics of multi-mode states. The multi-mode
flows can be described as a competition between two or more domain-filling travelling
wave modes, resulting in a low-frequency modulation of the wave amplitudes. This
variability arises from nonlinear coupling of the waves through wave-wave or wave-
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zonal flow interactions, or interactions of the fluid with the boundary conditions,
sometimes leading to phase and frequency locking. These ingredients allow for a range
of distinct behaviours, at least some of which are consistent with generic bifurcations
of low-dimensional systems. The general structure of the regime diagram appears
very complex, though we have suggested that widespread intermittent resonances
and frequency locking between a limited range of spatial modes contribute to the
apparently large variety of observed flow types.

For fairly small values of the Grashof number, Gr, a weak or moderate quasi-
periodic or chaotic modulation (3MAV) could be observed with the slowest modu-
lation towards small Gr. The transition from axisymmetric flow to steady waves at
small Θ is consistent with a Hopf bifurcation, but all observations indicate that the
transition from the lower symmetric regime to vacillating waves is far from the sim-
ple bifurcation sequence of a Hopf and a secondary Hopf bifurcation. It seems rather
that the onset of the vacillation, which mostly depends on Θ , and the transition
from axisymmetric flow to waves, which mainly depends on Gr, together give rise to
a codimension 2 point with a homoclinic orbit indicated by the ultra-low frequency
modulation.

Besides this ultra-low frequency 3MAV, two other regions of diverging timescales
have been observed: the onset of the bursting of the 3/2I regime, and where the drift
frequency of the 3MAV-r flows becomes very large, towards the transition to the
2SV and 2-3A regimes. The homoclinic behaviour associated with the bursting also
persists when frequency-locking has occurred. Instead of a low bursting frequency
we observed a low-frequency modulation of the bursting amplitude consistent with
an intermittency bifurcation of type III. The bursting frequency in the generic 3/2I
flows also was consistent with intermittency. Within the uncertainty of the exponent
the estimated scaling of the burst frequency as ωi ∝ γ0.7 could be consistent with
intermittency of either type-I (ω ∝ γ0.5) or type-II (ω ∝ γ) (Schuster 1989). In a
numerical study with a two-level model, Früh (1996) found solutions very similar
to the 3/2I flows, in which the transition from single-wave solutions to multi-mode
states was found to occur through intermittency.

While homoclinic bifurcations were the generally preferred bifurcations, other bi-
furcations occurred under much more specific conditions, with a striking absence of
secondary Hopf bifurcations. The occurrence of perfectly regular T 2-tori was confined
to large values of Θ , where the harmonic triad interaction seemed to be essential in
establishing the regular 2+3IV and 3AV flows. This was also the region where a
torus-doubling bifurcation was found. Otherwise, period-doubling bifurcations were
restricted to flows with initial states which were one-frequency flows, either fully
frequency-locked flows or stationary waves. The locking of ωm to ωd did not, how-
ever, result in quasi-periodic flow on a torus, nor did it seem to affect the bifurcations.
The transition from the lower symmetric regime to steady waves along routes of con-
stant Θ was consistent with a Hopf bifurcation, but the transition from steady to
amplitude-vacillating waves was immediately to 3MAV rather than to 3AV flows—all
observed 3AV flows for Θ < 0.8 were in fact frequency-locked with ωm = ωd and
ωv = nωd where n is an integer (typically between 3 and 6).

The last observed multi-mode regime with ultra-low frequency variability, the 2-
3A regime, seemed to grow out of the 3/2I flow before the final transition to the
m = 2 flow. At high values of Θ , the 2-3A regime was situated between the 3/2I
and 2SV regimes, while at lower Θ the flow bifurcated directly from the 3/2I to
the m = 2 regime and vice versa. The direct 3/2I↔2SV transition was hysteretic in
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contrast to the 3/2I↔2–3A↔2SV transitions. Both transition scenarios involve two
coexisting solutions, a 3/2I and a 2SV solution. The crucial difference seemed to lie
in the stability of the m = 2 flow. For the hysteretic 3/2I↔2SV transition the m = 2
solution was stable, but in the 2-3A regime it acted like a saddle ‘point’. It has been
suggested above (§8 c) that the 2-3A regime is the result of a purely deterministic
or a noise-induced attractor-merging crisis.

From analysis of observational data in the atmosphere (Plaut & Vautard 1994) it
is widely accepted that variability on timescales less than a year, but longer than
the intrinsic predictability of weather, is associated with switching between a small
number of states or so-called ‘weather regimes’. Plaut & Vautard (1994) found ev-
idence that synoptic transients, such as baroclinic waves, may play a crucial role
in the maintenance of this variability. Recent studies by Collins et al. (1995) of the
general circulation of the Martian atmosphere found an irregular switching between
two different wave states (similar to flow in the 2-3A regime but with zonal wave
numbers m = 1 and 2) in the observed pressure time series from the Viking Landers,
as well as in a general circulation model, though in these cases the dynamical annual
and daily cycles of solar heating were significant.

Both low-dimensional deterministic dynamics as well as stochastic dynamics aris-
ing from localized instabilities were found to contribute to the complex flows observed
in our laboratory experiments. These two mechanisms have also been used to explain
the occurrence in climate models of long-term variability due to the internal dynam-
ics. James & James (1989, 1992) used a simple atmospheric circulation model, with
and without the annual cycle. Apart from a direct annual response in the presence
of the seasonal cycle, the maximum variability occurred at periods of 10–40 years in
either case, with and without the seasonal forcing. Pielke & Zeng (1994) observed
significant variability on interdecadal timescales in a three-dimensional dynamical
system derived by Lorenz (1990) as an example of a ‘simplest possible general circu-
lation model’. These deterministic models require the existence of a chaotic attractor,
which would generate very long periods without the need for either long-period forc-
ing or perturbations of solutions due to external noise. Different processes are invoked
in stochastic models (Hasselmann 1976) where, in addition to the deterministic forc-
ing terms, which represent climate dynamics on long timescales, random terms are
also included to represent high-frequency components of the weather. The labora-
tory experiments described here, together with the numerical work proposed in §8 c,
could give some indication of the relative importance of low-dimensional chaotic dy-
namics and essentially stochastic localized perturbations on the large-scale flow of
the middle latitude atmosphere.

9. Summary

The rotating annulus experiments presented here have shown a number of mixed-
mode states, which exhibit a large variety of frequency and phase locking scenarios.
We have defined a phase locking probability density function to analyse the strength
of phase coupling of the phase locking of individual triads and the higher-order
sideband coupling. Some regimes (3MAV and 2+3IV) showed clear indications that
resonant triad interactions are important, while others (3/2I and 2-3A) seemed more
to rely on the competition of two unstable modes through wave-zonal flow interac-
tions. Two main triad interaction scenarios were observed, one involving the mutual
harmonic mode of the two main modes, the other involving the long wave, m = 1. A
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steady wave showed strongest coupling of its side bands through its first harmonic
rather than via the long wave, but in vacillating flows the interactions were more
complex. Due to the dependence of the coupling on the wave amplitudes, the wave
interactions could lead to intermittent phase locking over only part of a vacillation
cycle, or even to a complex competition between different triads. Generally, however,
the regime diagram seemed to be divided into a larger region containing the 3MAV
and 3MAV-r regimes, where the long wave triad (3|2|1) dominated, and a smaller
region consisting of the interference vacillation (2+3IV) and a 3AV where their har-
monics, (3|6) and (2|4|6), provided the coupling. These two regions were separated
by the irregularly fluctuating dispersive wave regime D2.

There was ample evidence for homoclinic bifurcations as an essential mechanism
in organizing the regime diagram, with three critical points: (1) where the onset
of vacillation and the transition from the symmetric regime to m = 3 flows joined
up, (2) the onset of the intermittent bursting of secondary flows, leading to the 3/2I
regime, and (3) where the drift period of mode m = 3 in the 3MAV-r regime diverged.
This abundance of homoclinic behaviour, which might have some relevance to low-
frequency variability observed in the atmosphere, was in contrast to the striking
absence of secondary Hopf bifurcations in both generic flows as well as frequency
locked flows. Rather, the transition from steady waves to vacillating waves led directly
to weakly chaotic flow on a complex ‘fuzzy’ torus, and it appeared that quasi-periodic
flow on a torus was restricted to those flows which showed marked phase coherence
in the harmonic triads, i.e. 2+3IV and 3AV. The torus of the 2+3IV flow was then
observed to undergo a torus-doubling bifurcation before breaking up completely to
the D2 flow.

The widely observed frequency locking of the modulation frequency to the drift
frequency did not seem to affect the bifurcation structure, but complete locking of
the modulation, drift, and vacillation frequencies resulted in period-doubling as the
preferred bifurcation. The homoclinic orbit seemed to persist in frequency locked
flows which led to flows consistent with intermittency type-III in the 3/2I regime,
while the generic 3/2I flow was consistent with either type-I or type-II intermittency.

We suggest that the weak coupling of the travelling waves with the container might
be an important factor which might account for the frequently observed discrepancies
between numerical models and laboratory experiments. It is planned to study the
effect of this coupling mechanism in a series of experiments using controlled pertur-
bations of the cylindrical symmetry in the apparatus combined with some low-order
models, which include zonally non-uniform forcing.

Not all flows seemed to be consistent with low-dimensional dynamics, but flows
involving structural vacillation (2SV and 2-3A) showed apparently stochastic be-
haviour, which might be the transient growth of ‘non-normal’ modes from a local-
ized instability. These perturbations might be akin to the optimal modes known in
atmospheric instability theory, which do not preserve shape during their growth. In
this case the study of the structure of the SV flows requires a high resolution three-
dimensional flow visualization technique. The effect of these small fluctuations on
the bifurcations, however, could be modelled either by a purely deterministic model
where the SV modes are higher radial normal modes, or by a purely stochastic
parametrization of the SV in the form of random forcing.

A fundamental aspect of these experiments is the simple geometry of the appara-
tus, which helps in the investigation of the fundamental physical processes discussed
above. Future research, of course will have to address the implications of these sym-
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metric systems to the more complex situations as flows in the atmosphere or in
oceans. A step towards these situations would be to study baroclinic instability in
an open system such as a straight channel geometry with inflow and outflow at either
end of the straight channel section. In this case, the flow would not be subjected to
the azimuthal periodicity condition.
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this work, as well as for many inspiring discussions. We are also grateful to Dr Tom Mullin
and Dr Patrice Klein for helpful comments and discussions. The help from Mr Mike Buckler in
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Appendix A. Phase locking

From the integrated resonance condition for wave triads (equation (2.3)),

ϕm−m′−m′′ ≡ φm − φm′ − φm′′ ≈ const., (A 1)

one can evaluate a time-averaged quantity which shows how often each value of ϕ
(between 0 and 2π) is assumed by ϕm−m′−m′′(t). This ‘locking density’, ρm−m′−m′′ ,
may be defined as the probability density function ρ(ϕm−m′−m′′)dφ over the data set,
and gives information about the time-averaged phase locking: strong phase coherence
would result in a strong peak at the preferred value of ϕ, while no phase coupling
would give a fairly flat density function over its entire range 0 . . . 2π.

If no amplitude dependence needs to be considered then the phase locking func-
tion ϕm−m′−m′′ at time t makes a non-zero contribution to ρm−m′−m′′ only at φ =
ϕm−m′−m′′ . This can be expressed with the delta function, δ (φ− ϕm−m′−m′′(t)),
which then is integrated over time and normalized by all contributions (i.e. the lim-
its of the time integration):

ρ∗m−m′−m′′(φ) =
1

te − t0

∫ te

t0

dt δ(φ− ϕm−m′−m′′(t)). (A 2)

If one needs to separate the contribution from different amplitude ranges of the
participating modes, then at each time the contribution to the locking density has to
be weighted, either by 1 if all three modes are within their preselected amplitude win-
dow, or by 0 otherwise. This weighting is achieved by multiplying δ (φ− ϕm−m′−m′′(t))
by two Heaviside functions, H, for each mode j, one setting the lower limit of the
amplitude window and one the higher limit: H(Aj(t) − Amin

j )H(Amax
j − Aj(t)). In

the following equation this weighting is applied also to the normalization factor to
ensure

∫
ρ dφ = 1. With these amplitude windows, equation (A 2) becomes

ρ∗m−m′−m′′(φ; {Amin,max
j })

=

∫ te
t0

dtδ(φ− ϕm−m′−m′′(t))
∏
j H(Aj(t)−Amin

j )H(Amax
j −Aj(t))∫ T

t0
dt
∏
j H(A(t)−Amin

j )H(Amax
j −Aj(t))

, (A 3)

where j = m,m′,m′′ and

H(x) =

{
1 if x > 0,
0 otherwise.
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In practice, ρm−m′−m′′ is calculated by counting the scans for which

φ 6 ϕm−m′−m′′ < φ+ δφ,

provided the amplitudes of the waves are within a preselected amplitude range. The
density is normalized to have unit area in the interval 0 . . . 2π:

ρa−b−c(φ) =
1
δφ
×

no. of scans with

{
φ 6 ϕa−b−c < φ+ δφ, and
Aminj 6 Aj 6 Amax

j , j = a, b, c

}
no. of scans with {Aminj 6 Aj 6 Amax

j , j = a, b, c} . (A 4)

As in the triad phase locking a sideband locking probability density, ρm can be
defined as a measure of the time-averaged strength of the wave coupling by this
mechanism with equation (A 4), but using Φm instead of ϕm−m′−m′′ .
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